Exercise induced hypoxemia at moderate altitude: comparison between running and roller skiing field test in young elite biathletes

ARTICLE in THE JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS · JUNE 2014
Impact Factor: 0.97 · Source: PubMed

3 AUTHORS, INCLUDING:

Anne-Fleur Gaston
Université de Perpignan
2 PUBLICATIONS 0 CITATIONS

Fabienne Durand
Université de Perpignan
29 PUBLICATIONS 512 CITATIONS
Exercise induced hypoxemia at moderate altitude: comparison between running and roller skiing field test in young elite biathletes

A. F. GASTON, I. HAPKOVA, F. DURAND

Aim. Exercise induced hypoxemia (EIH) can develop in highly trained endurance athletes in terms of exercise mode, muscle mass involved in the exercise, training status and altitude. With this background, the present study compared EIH development and cardiorespiratory responses, in younger highly trained biathletes, at moderate altitude, during running and roller ski field tests.

Methods. Ten younger (15.3±1.5 years) highly trained biathletes performed two incremental maximal field tests (Leger Boucher test) in running (R) and in roller skiing (RS), at 1850 meters altitude. EIH (haemoglobin O\textsubscript{2} saturation (SpO\textsubscript{2}) decreased ≥4% from baseline) was measured indirectly using an ear-lobe pulse oximeter included in the K4 (Cosmed) used for measured cardiorespiratory responses.

Results. During the R test, 9 athletes developed EIH whereas only 7 in SR test. Tests duration was the same furthermore at the end of tests, fall of SpO\textsubscript{2} was significantly higher in R compared to RS (-9.11±1.51 vs -5.89±1.09; P<0.01). SpO\textsubscript{2} was significantly lower in R compared to RS from 75% of VO\textsubscript{2max} to VO\textsubscript{2max} (-5.97±1.12 vs. -3.93±1.07; P<0.05). VO\textsubscript{2max} was significantly higher in R than in RS (61.33±6.36 vs 57±6.60 mL.min-1.kg-1; P<0.001).

No difference of maximal heart rate, global ventilation, tidal volume or respiratory frequency was present during and at the end of tests.

Conclusion. We concluded that prevalence and severity of EIH was more important during R than RS exercises and that EIH differences may be due to a greater gas exchange abnormality in R.

KEY WORDS: Exercise - Oxygen - Skating - Running - Altitude.

It is now well accepted that exercise-induced hypoxemia (EIH) occurs in endurance-trained athletes.1, 2 Physiopathology is still unclear with a probable relative hypoventilation which is link with training adaptation and gas exchange abnormality.3 More important is the incidence of EIH during sport practice, including training and/or competition and its consequences. In fact EIH may negatively affect VO\textsubscript{2max}1 and subsequently exercise performance.4 The degree of hypoxemia is function of training status and/or exercise mode and/or muscle mass involved and/or altitude exposure. Indeed several studies have been demonstrated that a higher level training leads to a greater severity of EIH.5, 6 In addition gender and age are particularly involved in the amplitude of EIH.7, 8 Endurance-trained women and younger athletes who are characterized by smaller lung volumes and diffusion, \textit{i.e.} an inadequate system to cope with high level demands, exhibit greater EIH. Other authors9, 10 observed that EIH is more apparent in exercise modes engaging a large fraction of the total muscle mass. Most studies compared running and cycling laboratory tests,11, 12 and all reported a higher EIH during running exercises. However, all these studies used laboratory and not field tests and were unfolded at sea level. It is know that athletes exhibiting EIH at sea level suffer more severe gas exchange impairments during short-term exposure to altitude than athletes or no athletes who do not exhibit EIH at sea level. Compared with a 7% decrease in O\textsubscript{2} arterial saturation at sea level, the reduction is...
15% at 3000 m of simulated altitude. This phenomenon explains much of the observed variance in the decline in VO2max among individuals during short-term altitude or hypoxia exposure.

Biathlon is a winter endurance sport specialty in which athletes are highly endurance trained. So biathletes probably present EIH even more when they exercise at moderate altitude. High level biathletes involved in competition have to train all the year. So during the offseason (autumn and summer) biathlon training consists essentially of running (R) and diagonal roller skiing (RS) at moderate altitude. These exercises modes implicate a large fraction of the total muscle mass and then could be sufficient to generate EIH in some biathletes. Moreover the fact that upper and lower body muscles are differently engaged in each exercise mode could influence EIH. So it seems of interest to study EIH and cardiorespiratory adaptations for each exercise mode realized during the offseason training, particularly in young athletes involved in high level biathlon.

Materials and methods

Subjects

Ten younger highly trained biathletes (3 women and 7 men) living and training at moderate altitude (1850 m) volunteered to participate in this study through the monitoring of their training. All young biathletes were athletes of the high level national pole of biathlon of Font Romeu, France. They were aged 15.3±0.5 years, trained regularly for at least 4 years prior to the study. Their average training was 15 hours per week. All were healthy, non-smokers, with no history of cardiopulmonary disease. This protocol was performed with coach for master the training of young biathletes. The study was approved by the committee on research ethics at the institution in which the research was conducted and any informed consent from human subjects was obtained as required.

Incremental exercise protocols

During the offseason in autumn, athletes were asked to perform 2 incremental maximal field tests on a track of 400 m, at approximately the same time of day 48 h apart. The R test was a classical Leger Boucher test. It is a continuous and maximal multistage track test based on the energy cost of running. This test has been reported to deliver high precision, reproducibility and validity for VO2max predicted when compared with VO2max measured directly during a multistage running treadmill test (correlation coefficient of 0.96 and a standard error of 4.5%). The RS test was also a Leger Boucher test but adapted to roller skiing. Tests began at a speed between 8 to 14 km.h\(^{-1}\) depending on the level of subject. Speed was increased first 2 minutes by 1 km.h\(^{-1}\) then every minute by 0.5 km.h\(^{-1}\) until subject exhaustion. In both tests, to be sure that subject sustained the fixed speed; we marked the runway with flags every 50 m. Subjects needed to be localized near a flag (±3 m) each time they received a toot. The test was stopped when the subject became exhausted or when they could not catch up on their delay. During both tests, subjects were verbally encouraged to continue for as long as possible. The weather during tests was sunny: temperature 22.1±1.3 °C and relative humidity 49.9±0.1%.

Measurements

EIH

EIH was considered to exist when a SpO2 fall ≥4% was observed between rest and maximal condition of the field test during at least 3 minutes. SpO2 was measured continuously during tests using an earlobe pulse oximeter (Cosmed, Rome, Italy). This method has been reported to deliver high precision, reproducibility and validity for O2 saturation above 85% when compared to O2 saturation measured from arterial blood gases in highly trained athletes. The instrument’s conducting cable was secured to prevent movement artefacts and before the probe was placed, the ear lobe was warmed up by massage to active arterialized circulation.

Cardiorespiratory parameters

A K4b2 breath-by-breath telemetric and portable gas analyser (Cosmed, Rome, Italy) was used to collect the metabolic data: oxygen uptake (VO2, mL.min\(^{-1}\).kg\(^{-1}\)), respiratory exchange ratio (RER=VCO2/VO2), minute ventilation (VE,
L.min⁻¹ tidal volume (V_T, L), breathing frequency (B_F, breaths.min⁻¹). The pneumotachographs and analysers of the Cosmed K4b² system were calibrated before every test session according to the manufacturer’s specifications, using respectively a 3-l syringe and a gas bottle of known O₂ and CO₂ concentrations (16% and 5% respectively). Each subject was also equipped during field maximal tests with a chest belt (Polar Electro, Kempele, Finland) to collect heart rate continuously (HR, beats.min⁻¹).

The highest VO₂ and HR obtained during the incremental test for 15 s were defined respectively as the VO₂max and the HRmax. Criterions used to verify that the test was performed at maximal subject’s capacity were 1) an increase of VO₂ of <100 mL with the last increase in work rate; 2) attainment of age-predicted maximal heart rate (HR) (210-[0.65 age]±10%); 3) a RER superior to 1.1 (Table I); 4) the incapacity of the subject to maintain the speed desired despite maximum effort and verbal encouragement. All subjects achieved three of criteria at least.

Statistical analysis

The results are expressed as means ±SEM. Differences in values obtained at VO₂max between the R and RS exercise were analysed using Student’s t-test for paired samples. Differences in all SpO₂ and respiratory variables were analysed with a two-way repeated measure ANOVA which examined the main effects and interaction between exercise time (rest, 40, 60, 75, 80, 100 % VO₂max) and exercise modality (running or roller skiing). Where overall significance was obtained, differences between means were identified using Student-Newman-Keuls post hoc analysis. Correlations between the variables were tested using Pearson’s product-moment correlation coefficient test. For all tests, the level of statistical significance was set at P<0.05 and analyses were conducted using SigmaStat software (Ver 2.03).

Results

Young biathletes were aged 15.3±0.5 years. Body mass and height were respectively 54.4±3.1 kg and 168±2.9 cm. SpO₂ at rest measured before each test was 97.4±0.7 and 97.3±0.4% respectively for R and RS tests. There is no statistical difference. Table I reports maximal data and ventilatory threshold (VT) under both experimental conditions. VO₂max is 8% significantly lower during maximal RS when compared to R tests, although VT₁ and VT₂ are no different. The duration of the exercise tests were the same between R and RS, in mean 11 minutes.

VE, V_T and B_F values at rest, submaximal (40, 60, 75 and 80% of VO₂max) and maximal intensities are similar for R and RS tests (Figure 1).

SpO₂ decreases significantly from rest to maximal in both tests (P<0.001). Delta of SpO₂ between rest and maximal exercise is -9.1 in R whereas -5.9 in RS (P<0.05). During the R test, 9 athletes developed EIH (Figure 2). Their SpO₂ decreases from 98% at rest to 87% at maximum. In contrast, only 7 of these same subjects demonstrated EIH during RS, which SpO₂ falling from 98% at rest to 91% at maximum. Kinetics of SpO₂ decreased show that SpO₂ is significantly lower in R compared to RS from 75% of

<table>
<thead>
<tr>
<th>Table I.—Maximal values under both experimental conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>VO₂, mL.min⁻¹.kg⁻¹</td>
</tr>
<tr>
<td>VE, L.min⁻¹</td>
</tr>
<tr>
<td>V_T, L</td>
</tr>
<tr>
<td>B_F, breaths.min⁻¹</td>
</tr>
<tr>
<td>SpO₂, %</td>
</tr>
<tr>
<td>HR, beats.min⁻¹</td>
</tr>
<tr>
<td>RER</td>
</tr>
<tr>
<td>VT₁, % VO₂max</td>
</tr>
<tr>
<td>VT₂, % VO₂max</td>
</tr>
</tbody>
</table>

Values are means ±SEM.
VO₂: oxygen uptake; VE: minute ventilation; V_T, tidal volume; B_F, breathing frequency; SpO₂: haemoglobin O₂ saturation; HR: heart rate; RER: respiratory exchange ratio; VT: ventilatory threshold.
*Significantly different from running (P<0.05).
VO_{2\text{max}} (P<0.05; Figure 3) to VO_{2\text{max}}. This difference is more important between 80 to 100% of VO_{2\text{max}} (P<0.005). At the end of tests SpO2 is 5% lower in R compared to RS (P<0.05).

There is a significant correlation between delta of SpO2 in R and RS (r=0.76, P<0.05). VO_{2\text{max}} in R is correlated to the VO_{2\text{max}} in RS (r=0.86, P<0.05). No significant correlation was found between SpO2_{max} in the maximal effort and VO_{2\text{max}}, B_{F\text{max}}, V_{T\text{max}}, V_{E\text{max}} or between VO_{2\text{max}} and B_{F\text{max}}, V_{T\text{max}}, V_{E\text{max}} (P>0.05 vs. all exercise modes).

Discussion

This study shows that EIH is more important in R compared to RS maximal exercises. This is associated with a greater VO_{2\text{max}} during R, whereas there is no difference between cardiorespiratory parameters.

EIH description

To our knowledge, only one study measured O2 desaturation during R and RS maximal exercises at sea level. At the end of tests O2 saturation was ≈93% and delta of arterial O2 saturation was ≈5 with no difference between 2 modes exercises. VO_{2\text{max}} values (=6 L/min) were no great difference. Well there was no difference between cardiorespiratory parameters. In our study more subjects developed EIH and EIH severity was more important in R compared to RS maximal exercises. This phenomenon has been objectified by an O2 desaturation between rest and maximal more important in R. More specifically EIH kinetic analyse showed that O2 desaturation difference appeared from 75% of VO_{2\text{max}}. Yet this intensity matches with a specific stage of EIH. Indeed in EIH phenomena Durand et al. and Prefaut et al. identified two stages. The first, during submaximal exercise was called early stage. It has been consistently associated with a sluggish ventilatory response leading to decrease O2 blood pressure (PaO2) and O2
arterial saturation (SaO₂). If the first stage is subsequent to high endurance training cardio muscular adaptation, the second is specific to EIH phenomena. This late stage starts from ≈75% VO₂max until VO₂max. A gas exchange alteration was signalled by a widening in alveolar-arterial PO₂ difference which contributed to the hypoxemia increased: the fall of PaO₂ and SaO₂ continued to increase. In our study a difference between RS and R occurs in the second stage suggesting that in R gas exchange abnormality could be increased and/or that another mechanism could be present. Several hypothesis have been proposed to explain gas exchange abnormality in EIH: 1) reduced transit time; 2) ventilation to perfusion mismatching; 3) increased shunt; and 4) interstitial pulmonary oedema. In addition our study was realized at moderate altitude and it is well proven that diffusion limitation becomes more pronounced in hypoxia at any given alveolar ventilation.

EIH explicative hypothesis

A part of this gas exchange alteration could be explained by a duration of haemoglobin O₂ reload not sufficient to maintain SpO₂. It is also assumed by Holmberg et al. when they reported a lower O₂ desaturation and VO₂max in double polling (upper body exercise) compared to R and RS exercises. They suggested that as there is a linear relationship between the VO2 and the cardiac output (Qc), the mean red cells transit time can be slightly longer during double polling. In our study O₂ desaturation was more important in R than in RS. Insofar as Qc was more important in R, the mean red cells transit time can be to faster to allow an optimal duration of haemoglobin O₂ reload. In line with this, if the Qc is higher during R test compared to RS test, lung blood pressures are more important causing higher alveolar capillaries stretching or/break. Indeed when the stress in the capillary walls rise to high levels, ultrastructure changes occur in the pulmonary gas-blood barrier, a condition known as stress failure. Several studies have been in evidence an excessive accumulation of extravascular lung water secondary to stress-induced failure of pulmonary capillaries, which may contribute to the impairment of pulmonary diffusion in response to high-intensity exercise. As such, we would suggest that the higher O₂ desaturation in R can be explained by a greater O₂ diffusion limitation.

Differences of VO₂max and EIH relationship

It is well reported in literature that EIH induced a VO₂max decrease. Whereas in this study EIH is linked in R exercise with a greater VO₂max compared to RS exercise. On the basis of the evidence presented here it appears that degree of hypoxemia is function of exercise mode. Exercise using upper body (like roller skiing) seems moderate VO₂max and limit the fall of SpO₂ compared to an exercise using lower body (like running). An explanation for the lower VO₂max during RS may be the greater and faster recruitment of type II muscle fibers. In fact some previous studies reported higher blood (lactate) during arm exercise and the authors have assumed that a greater contribution from anaerobic glycolysis to the total ATP turnover may have caused the lower VO₂max. So in this study the difference of VO₂max can be explained by a utilization of muscular fibers if more important during the RS exercise because of the upper body requested. Indeed previous works have implicated the importance of upper body aerobic and anaerobic power to ski performance. Kinematic analysis of elite skiers and top junior skiers has suggested that approximately 50% of effective forward propulsion during uphill ski skating can be attributed to poling. Or it is know that there are significant differences in the proportion of type I muscle fibers between the upper body (arms, chest and shoulder: typically ≈30% type I fibers) and lower body (legs and seat: typically ≈50% type I fibers) musculature. This suggests that the peripheral extraction is decisive in EIH apparition and that EIH is greater when oxidative metabolism activation is higher. Another reason for the lower VO₂max observed during RS exercise could be related to a muscle-specific de-training effect after the competitive ski season is over. Rundell found that high volume roller skiing during summer training results in similar peak VO₂ values between R and RS, although lower peak VO₂ values for RS were obtained during presummer testing. This implies that ski-specific training can attenuate the physiological differences between RS and R. The significant difference in VO₂max may be coincident with a low percentage of ski-specific training. It is apparent that VO₂max is compromised during RS in skiers who do not have a large base of ski-specific training.
Implications for training

The effects of EIH are currently debated. Further investigations are needed to determine the long term consequences of repetitive hypoxemia in highly trained endurance athletes. EIH exhibited by endurance-trained subjects during high-intensity exercise has been shown to contribute significantly towards quadriceps muscle fatigue, diaphragmatic fatigue and more generally a significant effect on the rate of development of locomotor muscle fatigue. Moreover independent of the type of maximal exercise, an approximate 15% reduction in pulmonary diffusion takes place 2-3 hours postexercise, which normalizes during the following day of recovery has been reported. So the first studies about the consequences of EIH have been demonstrated potential negative effects on the performance and may be on the health in long term. It seems to be more favourable for younger biathletes to practice less time as possible an exercise which develop a greater EIH. In the findings presented here it becomes clear that it is important taking into account exercise mode in training regimen for athletes developing EIH. It is advisable to encourage RS specific training rather than R training during offseason. Further under our results we would suggest that supplemental RS specific upper body training should be incorporated in the training regimen of EIH athletes for try to master EIH and the reduction of the performance associated. This is an adequation with Rundell who suggested a high percentage of off-season training time should be spent RS in order to 1) provide sufficient stimulus for optimal peripheral adaptations to occur in RS-specific muscles; and 2) promote RS-specific neural pathway development, which is probably important in skiing efficiency.

Conclusions

In summary, this study shows that prevalence and degree of EIH are more important in R compared to RS maximal exercises. Moreover young elite biathletes reach higher VO$_{2\text{max}}$ in R test, in spite of similar HR$_{\text{max}}$ and ventilatory functions. So our data supports the hypothesis that gas exchange abnormality can be more important in R but more investigations are necessary for explain exactly the origin of EIH differences between exercise modes. Based on these results, practical advice for biathletes and coaches would be to take into account exercise mode in training regimen for athletes developing EIH, and the importance of upper body training in order to limit the potentially deleterious effects of EIH on health and performance.

References

Presented at ECSS Congress, Barcelona, 29th June 2013.

Acknowledgements.—The authors would like to thank the national pole of biathlon of Font Romeu and wish to give a special thanks to the athletes who participated in the study.

Conflicts of interest.—The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Received on September 30, 2013.
Accepted for publication on February 12, 2014.