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Standley RA, Distefano G, Pereira SL, Tian M, Kelly OJ, Coen
PM, Deutz NE, Wolfe RR, Goodpaster BH. Effects of �-hydroxy-
�-methylbutyrate on skeletal muscle mitochondrial content and dy-
namics, and lipids after 10 days of bed rest in older adults. J Appl
Physiol 123: 1092–1100, 2017. First published July 13, 2017; doi:
10.1152/japplphysiol.00192.2017.—Loss of muscle mass during pe-
riods of disuse likely has negative health consequences for older
adults. We have previously shown that �-hydroxy-�-methylbutyrate
(HMB) supplementation during 10 days of strict bed rest (BR)
attenuates the loss of lean mass in older adults. To elucidate potential
molecular mechanisms of HMB effects on muscle during BR and
resistance training rehabilitation (RT), we examined mediators of
skeletal muscle mitochondrial dynamics, autophagy and atrophy, and
intramyocellular lipids. Nineteen older adults (60–76 yr) completed
10 days BR followed by 8-wk RT rehabilitation. Subjects were
randomized to either HMB (3 g/day HMB; n � 11) or control (CON;
n � 8) groups. Skeletal muscle cross-sectional area (CSA) was
determined by histology from percutaneous vastus lateralis biopsies.
We measured protein markers of mitochondrial content [oxidative
phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1,
FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and
atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty
acid composition of several lipid classes in skeletal muscle was
measured by infusion-MS analysis. Poly-ub proteins and OXPHOS
complex I increased in both groups following BR (P � 0.05, main
effect for time), and muscle triglyceride content tended to increase
following BR in the HMB group (P � 0.055). RT rehabilitation
increased OXPHOS complex II protein (P � 0.05), and total OX-
PHOS content tended (P � 0.0504) to be higher in HMB group. In
addition, higher levels of DRP1 and MFN2 were maintained in the
HMB group after RT (P � 0.05). BNIP3 and poly-ub proteins were
significantly reduced following rehabilitation in both groups (P �
0.05). Collectively, these data suggest that HMB influences mitochon-
drial dynamics and lipid metabolism during disuse atrophy and
rehabilitation.

NEW & NOTEWORTHY Mitochondrial content and dynamics
remained unchanged over 10 days of BR in older adults. HMB
stimulated intramuscular lipid storage as triacylglycerol following 10
days of bed rest (BR) and maintained higher mitochondrial OXPHOS
content and dynamics during the 8-wk resistance exercise rehabilita-
tion program.

mitochondria; bed rest; aging; HMB; exercise

OLDER ADULTS LOSE more muscle mass during a shorter period of
bed rest (BR) than younger individuals who undergo longer BR
duration. During 10 days of BR older adults lose 1 kg (28) of
leg lean mass, while younger individuals only lose 0.4 kg after
28 days of BR (38). These findings highlight the need for
effective countermeasures for older adults who undergo short
periods of disuse. Nutritional interventions during BR with
branched chain amino acids and/or complete nutrition are
attractive strategies to preserve skeletal muscle mass due to
their potent anabolic effect in skeletal muscle (11, 12). Other
compounds have also garnered attention due to their preclin-
ical and clinical effects on protein metabolism. Specifically,
�-hydroxy-�-methylbutyrate (HMB) has been found to sig-
nificantly impact skeletal muscle protein metabolism by
simultaneously stimulating protein synthesis and reducing
protein breakdown (56). We have previously reported that
consuming HMB during 10 days of BR preserved lean body
mass in older adults and improved muscle strength com-
pared with placebo control during an 8-wk resistance train-
ing rehabilitation program following BR (16). These find-
ings coupled with other HMB studies (6, 20, 34, 53) show
that supplementation with HMB alone or with amino acids
has a beneficial effect on skeletal muscle mass, strength, and
function in older adults (57).

HMB is a naturally occurring metabolite of leucine gener-
ated by a two-step process starting with the transamination of
leucine to �-ketoisocaproate (KIC) and further conversion by
of KIC to HMB via a KIC-dioxygenase (37). Animal (preclin-
ical) studies provide evidence that HMB exerts its positive
effects on skeletal muscle protein metabolism through the
stimulation of muscle protein synthesis (MPS) by activating
mechanistic target of rapamycin-eukaryotic translation initia-
tion factor 4E-binding protein 1-ribosomal protein S6 kinase
�-1 (mTOR-4EBP1-p70SK1) pathway (5, 19, 26) and sup-
presses muscle protein breakdown (MPB) by inhibiting the
ubiquitin proteasome pathway (19, 25, 29, 48, 49), inflamma-
tory cytokines, and autophagy (19, 22). In addition, HMB has
been shown to enhance recovery from immobilization by
reducing myonuclear apoptosis and stimulating satellite cell
regeneration in aged rats (3). These findings in animals are
supported by an isotope study in humans showing HMB
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supplementation increases MPS and inhibits MPB in young
healthy men (56). In addition to the positive effects on protein
metabolism, recent evidence suggests that HMB can stimulate
mitochondrial biogenesis and fatty acid oxidation via stimula-
tion of peroxisome proliferator-activated receptor-� coactiva-
tor-1� (24) and increase citrate synthase activity (40). These
new mechanisms of action for HMB may be significant as
emerging evidence suggests that mitochondrial dysfunction
and reactive oxygen species (ROS) production may contribute
to skeletal muscle atrophy.

Mitochondrial dysfunction during physical inactivity or im-
mobilization manifests in multiple ways including the release
of proapoptotic factors (1, 33), morphological alterations (fis-
sion, swelling), and energy stress (43), leading to elevated ROS
production. In addition, recent evidence suggests intramyocel-
lular sphingolipids contribute to ROS production in skeletal
muscle (21). Oxidative stress stimulates muscle atrophy by
increasing the expression of proteins involved in the autophagy
and proteasome system (4, 15, 30, 35), activating the calpain
and caspase-3 pathways (15, 35, 47, 55), modifying proteins
making them susceptible to proteolytic degradation (39, 46,
58), and depressing protein synthesis (39, 46, 58). To our
knowledge there is only one investigation examining the ef-
fects of short-term BR (7 days) on mitochondrial content,
oxidative capacity and stress, and skeletal muscle lipids (17).
Dirks et al. (17) found a reduction in mitochondrial oxidative
phosphorylation (OXPHOS) protein content, citrate synthase,
and �-hydroxyacyl-CoA dehydrogenase (�-HAD) enzyme ac-
tivity in young men (mean age 23 yr). However, there were no
changes in 4-hydroxynonenal, protein carbonylation, superox-
ide dismutase 2, catalase, and various lipid classes and species,
suggesting the mechanism of muscle loss is independent of
oxidative stress (2). This study does provide evidence that
BR-induced alterations to mitochondrial content and oxidative
capacity may occur concomitantly with a loss of quadriceps
cross-sectional area (CSA; 3.2%) in younger individuals and
highlights a need for effective countermeasures to help pre-
serve skeletal muscle health during periods of disuse.

Our previous paper showed that HMB supplementation was
effective at preserving lean body mass after 10 days of BR in
older adults and enhanced strength recovery during an 8-wk
RT rehabilitation program (16). Some proposed mechanisms
underlying the beneficial effects of HMB could be via its effect
on mitochondria, autophagy, and lipid metabolism. Thus the
purpose here was to examine changes to muscle mitochondrial
dynamics and autophagy and intramyocellular lipids following
10 days of BR and 8 wk of resistance training rehabilitation in
older adults.

METHODS

Study design. This study was a prospective, randomized, double-
blinded, placebo-controlled 10-wk investigation in older adults (n �
19, 60–76 yr). During the 10 wk, subjects completed 10 days of BR
followed by an 8-wk progressive resistance training rehabilitation
(RT) program of the upper and lower extremities three times per week
and consumed a placebo (CON; n � 8, 1 male/7 female; age: 67 � 2
yr; and body mass index (BMI): 26.5 � 1.2 kg/m2] or calcium HMB
(3.0 g/day HMB; n � 11, 3 male/8 female; age: 67 � 1 yr; and BMI:
24.9 � 1.0 kg/m2) throughout the study period. The study was con-
ducted at the University of Arkansas for Medical Sciences Clinical
Research Center, Little Rock and approved by the Institutional Re-

view Board of University of Arkansas for Medical Sciences. All study
procedures, risks, and benefits were explained to the subjects before
giving written consent to participate. There was no significant differ-
ence between groups at baseline for the following variables: age (yr),
BMI (kg/m2), 25-OH-vitamin D (ng/ml), body weight (kg), total body
fat (kg), bone mineral density (g/cm2), fasted glucose (mg/dl), total
cholesterol (mg/ll), serum albumin (g/dl), C-reactive protein (CRP;
mg/l), and Short Performance Physical Battery score. A detailed
presentation of the subject characteristics, study design, inclusion and
exclusion criteria, supplementation, compliance, BR, body composi-
tion, strength testing, and resistance-exercise training measurements
and related findings have been reported previously (16).

Skeletal muscle biopsy. Subjects underwent a muscle biopsy of the
medialis vastus lateralis before and on the last day of BR and 24 h
following the last bout of exercise at the end of the RT program. A
biopsy sample was taken 10–15 cm above the knee under local
anesthesia (lidocaine HCl 1%) with a 5-mm Bergstrom needle with
suction. After the biopsy, excess blood, visible fat, and connective
tissue were removed from the muscle tissue, and immediately frozen
in liquid nitrogen (�190°C) until analysis. Since there was variability
in the amount of sample that was obtained from each subject, not all
subjects biopsies could be analyzed for all measures.

Histology. Histochemical analyses were performed on serial sec-
tions using methods previously described (7). Briefly, muscle was
placed vertically in mounting medium on cork. Once on the cork, the
muscle was frozen in isopentane cooled with liquid nitrogen until
thoroughly frozen. Samples were placed in labeled cryotubes and
stored in liquid nitrogen or �80°C until sectioning. Biopsy samples
were sectioned (10 	m) and air-dried overnight and fixed in 25%
acetone/75% ethanol for 5 min before staining. Sections were sequen-
tially reacted immunohistochemically with antibodies to type I (Sigma
clone NOQ7.5.4D monoclonal anti-myosin skeletal slow) and type II
(Sigma clone MY32 monoclonal anti-myosin skeletal fast-alkaline
phosphatase conjugated) myosin. Vector SG and Vector Red were
used as the chromogens to detect type I and type II fibers, respec-
tively. Images from the transverse muscle sections were captured
using a microscope-mounted digital camera (Olympus BX-41 micro-
scope and DP-71 camera). Images were analyzed using the Vi-
siomorph (Visiopharm, Medicon Valley, Denmark) image analysis
system. An average number of 256 fibers were analyzed per subject.

Western blot. Muscle homogenates were prepared as previously
described (35). Proteins were separated by gel electrophoresis using a
4–20% gel (Bio-Rad Mini-PROTEAN TGX Precast Gel) and trans-
ferred onto polyvinylidene difluoride membranes (Bio-Rad Laborato-
ries, Hercules, CA). Membranes were blocked in 5% nonfat milk, and
incubated with the following primary antibodies overnight at 4°C: DRP1
and OPA1 (1:500; BD Biosciences, San Jose, CA), FIS1 (1:1,000; Enzo
Life Sciences, Farmingdale, NY), MFN2 and BNIP3 (1:500, 1:1,000;
Sigma-Aldrich, St. Louis, MO), Beclin1 and LC3A/B (1:1,000; Cell
Signaling, Danvers, MA), OXPHOS (1:1,000; MitoSciences, Eugene,
OR), and �-tubulin (1:1,000; Santa Cruz Biotechnology, Santa Cruz,
CA). Membranes were then incubated in appropriate species-specific
secondary antibodies for 1 h (IRDye 800CW anti-Rabbit IgG No.
926–32211 and IRDye 680RD anti-Mouse IgG No. 926–68070; Li-Cor
Biosciences, Lincoln, NE). Protein bands were visualized using a Li-Cor
Odyssey infrared imaging system (Li-Cor Biosciences) and analyzed
with Image Studio v2.1 software (Li-Cor Biosciences). Protein loading
was controlled by normalizing bands of interest to �-tubulin expression.
Gel-to-gel variation was controlled for by using a standardized sample on
each gel.

To analyze poly-ub proteins, 20 ug of muscle samples were loaded
on a 4–20% gel (Bio-Rad, Mini-PROTEAN TGX Precast Gel) as
previously described (9). Proteins were transferred onto a nitrocellu-
lose membrane overnight at 30 mA at 4°C. Membranes were blocked
with 5% nonfat milk for 1 h and then incubated with primary antibody
overnight at 4°C (anti-polyubiquitin; 1:1,000; Enzo Life Sciences,
Farmingdale, NY). Membranes were then incubated with secondary
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antibody for 1 h (IRDye 800CW anti-mouse IgM No. 925–32280;
Li-Cor Biosciences). Protein bands were visualized as described
above. The amount of poly-ub proteins was normalized to tubulin.

Lipidomics. Lipids were extracted from muscle samples (50 mg) in
methanol:dichloromethane in the presence of 15:1n5, 17:0, 17:1n7,
and d31SM16:0 for sphingomyelin as internal standards. The extracts
were concentrated under nitrogen and reconstituted in 0.25 ml of
10mM ammonium acetate dichloromethane:methanol (50:50). The
extracts were transferred to inserts and placed in vials for infusion-MS
analysis, performed on a Shimazdu LC with nano PEEK tubing and
the Sciex SelexIon-5500 QTRAP. The samples were analyzed via
both positive and negative mode electrospray. The 5500 QTRAP scan
was performed in MRM mode with the total of more than 1,100
MRMs. Individual lipid species were quantified by taking the peak
area ratios of target compounds and their assigned internal standards
and then multiplying by the concentration of internal standard added
to the sample. Lipid class concentrations were calculated from the
sum of all molecular species within a class, and fatty acid composi-
tions were determined by calculating the proportion of each class
comprised by individual fatty acids.

Statistical analysis. Comparisons between pre- and post-BR and
post-BR and recovery were analyzed using two-way (group and time)
ANOVA with repeated measures, and post hoc comparisons were
made with Tukey’s test. ANOVA testing was conducted on the fold
change for protein and triacylglycerol (TAG) data and on absolute
values for the lipid data in the Supplemental Tables S1–S11 (Supple-
mental Material for this article is available online at the Journal
website). Normality of the data was tested using Shapiro-Wilk test,
and nonnormally distributed data were log transformed. Significance

was accepted at P � 0.05. Data are presented as means � SE and
analyzed using JMP version 13.0 (SAS Institute, Cary, NC).

RESULTS

Histology. Skeletal muscle CSA are presented in Table 1 and
representative images in Fig. 1. There were no significant
changes between groups in skeletal muscle CSA following BR
in both groups (Type 1 CSA Interaction: P � 0.49; Type 2
CSA Interaction: P � 0.14).

Mitochondrial content. Mitochondrial OXPHOS protein
content following BR and RT and representative blots are
presented in Fig. 2, A and B. There was a significant main
effect for time for complex I to increase in both groups
(Interaction: P � 0.74; Time Effect: P � 0.039), and all other
complexes remained unchanged following BR (P 
 0.05).

There was a tendency for complex I to be reduced in CON
after RT (Interaction: P � 0.071; Group Effect: P � 0.095).
Complex II was significantly upregulated in the HMB group
compared with CON following RT (Interaction: P � 0.032,
post hoc CON recovery vs. HMB recovery: P � 0.012). There
was a tendency for a total OXPHOS to be elevated in the HMB
group after RT (Interaction: P � 0.071; Group Effect: P �
0.0504).

Mitochondrial dynamics and muscle proteolysis. The pro-
teins associated with mitochondrial fission (FIS1 and DRP1),
fusion (MFN2 and OPA1), and autophagy (Beclin1, LC3B,

Table 1. Skeletal muscle cross-sectional area

Control HMB

Cross-Sectional Area, 	m2 Pre (n � 8) Post (n � 8) Recovery (n � 7) Pre (n � 10) Post (n � 10) Recovery (n � 10)

Type I 4,841 � 617 5,073 � 463 4,054 � 510 5,071 � 392 5,075 � 496 5,108 � 823
Type II 2,679 � 385 3,444 � 418 3,121 � 389 3,377 � 273 3,477 � 467 3,585 � 243

Data are means � SE. HMB, �-hydroxy-�-methylbutyrate. No significant changes were observed in either group.

Control

HMB

Pre Post Recovery

Fig. 1. Representative histology images for both control and �-hydroxy-�-methylbutyrate (HMB) groups at pre-bed rest (BR), post-BR, and recovery time points.
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and BNIP3) following BR and RT rehabilitation are presented
in Fig. 3, A and B. There were no significant changes in
mitochondrial fission (FIS1 and DRP1), fusion (MFN2 and
OPA1), and autophagy (Beclin1, LC3B, and BNIP3) protein
levels following BR. There was a significant increase in
poly-ub proteins in both groups following BR (Interaction: P �
0.81; Time Effect: P � 0.027).

DRP1 was significantly elevated in the HMB group com-
pared with CON (Interaction: 0.078; Group Effect: P � 0.001),
and there was a significant group effect for MFN2 following
RT (Interaction: P � 0.73; Group Effect: P � 0.016). There
was a significant time effect for BNIP3 to be elevated (Inter-
action: P � 0.33; Time Effect: P � 0.04) and poly-ub proteins
to be reduced following RT (Interaction: P � 0.62; Time
Effect: P � 0.0005).

Lipidomics. Muscle total TAG (Interaction: P � 0.123;
Time Effect: P � 0.057), and saturated (Interaction: P �
0.124; Time Effect: P � 0.058), monounsaturated (Interaction:
P � 0.118; Time Effect: P � 0.057), and polyunsaturated
(Interaction: P � 0.136; Time Effect: P � 0.051) TAG levels
tended to increase in the HMB group following BR (Fig. 4, A
and B). There were significant increases in omega-3 (n3)-length
TAGs (Interaction: P � 0.117; Time Effect: P � 0.044) and
trends for increases in n6 (Interaction: P � 0.143; Time Effect:

P � 0.053) and n9 (Interaction: P � 0.114; Time Effect: P �
0.058) TAGs following BR in the HMB group (Fig. 4C). Several
TAG species had trends to be increased following BR: C15:0
(Interaction: P � 0.12; Time Effect: P � 0.11), C18:0 (Interaction:
P � 0.319; Time Effect: P � 0.0504), C18:3n-3 (Interaction: P �
0.098; Time Effect: P � 0.051), C18:2n-6 (Interaction: P � 0.138;
Time Effect: P � 0.0525), C20:2n-6 (Interaction: P � 0.152; Time
Effect: P � 0.0515), C18:1n-9 (Interaction: P � 0.114; Time Effect:
P � 0.057), and C20:1n-9 (Interaction: P � 0.095; Time Effect: P �
0.074) (Fig. 3D). Several TAG species had significant increases
following BR: C16:0 (Interaction: P � 0.131; Time Effect: P �
0.043), C22:5n-3 (Interaction: P � 0.124; Time Effect: P � 0.022),
C22:6n-3 (Interaction: P � 0.67; Time Effect: P � 0.020), C22:5n-6
(Interaction: P � 0.124; Time Effect: P � 0.019), and C22:1n-9
(Interaction: P � 0.487; Time Effect: P � 0.01) (Fig. 4D). Total
phosphatidylethanolamine tended to be reduced in the HMBS group
following BR (Interaction: P � 0.69; Group Effect: P � 0.08;
Supplemental Table S7). Total cholesteryl ester (Interaction:
P � 0.82), diacylglycerols (Interaction: P � 0.59), fatty acids
(Interaction: P � 0.83), cardiolipin (Interaction: P � 0.90),
lysophosphatidylcholine (Interaction: P � 0.33), phosphatidyl-
choline (Interaction: P � 0.22), phosphatidylserine (Interac-
tion: P � 0.97), sphingomyelin (Interaction: P � 0.52), and the
phosphatidylcholine-to-phosphatidylethanolamine ratio (Inter-
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Fig. 2. Skeletal muscle mitochondria oxidative phosphorylation (OXPHOS) content pre- and post-10 days of bed rest (BR) and after an 8-wk resistance training
rehabilitation (RT; A) and representative Western blot images (B). Pre- and post-BR data are reported as fold change from pre-BR and recovery data as fold
change from post-BR. Vertical dividing lines were used in the Western blot images to present lanes from the same gel that were reorganized for presentation
purpose; n � 6–8 per group; horizontal bars represent main effects, and error bars are SE. *Significant main effect for time from pre-BR (Interaction: P � 0.74;
Time Effect: P � 0.039); #trend for group effect from pre-BR (Interaction: P � 0.071; Group Effect P � 0.095); †significantly different from control (CON)
following RT (Interaction: P � 0.032, post hoc CON recovery vs. HMB recovery: P � 0.012); #trend for group effect following RT (Interaction: P � 0.071;
Group Effect P � 0.0504).
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action: P � 0.11) remained unchanged following BR and
uninfluenced by HMB (Supplemental Tables S1–S11). Al-
though the total contents of some lipid classes did not change,
some individual lipid species were altered following BR (Sup-
plemental Tables S1–s11).

DISCUSSION

Our previous study has shown that there is extensive loss of
muscle mass over 10-day BR in older adults and that HMB
could prevent or attenuate disuse atrophy during BR. To begin
to understand the molecular mechanisms leading to muscle
mass loss over BR and pathways impacted by HMB, we
examined changes to muscle mitochondrial dynamics au-
tophagy and the ubiquitin proteasome pathway following 10
days of BR and 8 wk of RT rehabilitation in older adults. In
addition, we evaluated the effects of disuse atrophy and reha-
bilitation on changes in intramyocellular lipids and whether or
not they were influenced by HMB. The main findings from this
investigation are as follows: first, levels of proteins related to
mitochondrial OXPHOS and dynamics remained unchanged in
older adults following 10 days of BR in both groups despite
differences in muscle mass loss between groups. Second,
immobilization caused an increase in TAG in the muscle and
this metabolic change was enhanced in the HMB-treated mus-
cles that were preserved during BR. Third, during RT rehabil-
itation, HMB maintained higher mitochondrial OXPHOS con-
tent and proteins associated with mitochondrial fission (DRP1)

and fusion (MFN2), which was not observed in the placebo
group receiving RT rehabilitation.

BR period. We found no changes in skeletal muscle fiber
CSA in both groups following 10 days of BR (Table 1).
Interestingly, these changes occurred despite a significant re-
duction in leg lean mass in the CON group (16). These are
similar findings to previous studies that found no changes in
muscle fiber CSA with reductions in leg lean mass measured
with DEXA after 7 days of BR (17, 42). Brocca et al. (9)
measured fiber CSA of the vastus lateralis after 8 and 35 days
of BR and found no change in CSA after 8 days BR but
significant reductions after 35 days BR. These findings suggest
that longer durations of disuse are necessary to detect atrophy
via measurement of vastus lateralis fiber CSA. There are other
potential explanations for the discrepancy between DEXA and
fiber CSA: 1) The changes in leg lean mass measured by
DEXA after short-term BR may more strongly reflect changes
to the lower leg musculature (ie. soleus), which is a postural
muscle that is highly susceptible to atrophy during disuse (52);
and 2) a potential redistribution in water compartments inside
the fat-free mass. A significant increase in the ratio of extra-
cellular-to-intracellular has been described after weight loss
(including fat free mass) (31). Changes in fat free mass as-
sessed by DEXA are also related to a reduction in extracellular
fluid and a preservation of intracellular structures and fluid
(23). Additionally, Clark et al. (13) found that when compared
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with MRI, DEXA overestimated total lean mass in young and
old men and women.

We examined the effects of 10 days of BR on mitochondrial
OXPHOS content and dynamics to understand how these
processes may be associated with muscle loss during short-
term disuse and if HMB may impact these processes. We show
that total mitochondrial content remained unchanged following
BR in both groups (Fig. 2A). These findings are contrast to the
findings from studies in younger individuals who had reduced
OXPHOS content after 7 days of BR (17). This may be due to
muscle age and the activity levels of our subjects before BR.
Older or sedentary subjects may need longer periods of disuse
to impact their mitochondrial content, which may already be
lower compared with younger physically active subjects. We
have recently shown that mitochondrial OXPHOS content is
similar between young, middle aged, and older sedentary
adults (18). However, to our knowledge there are no studies
human or animal directly comparing changes in mitochondrial
content in young and old after BR or disuse.

We also examined changes in levels of protein associated
with mitochondrial dynamics (fusion and fission) and au-
tophagy and total poly-ub proteins as a proxy for the protea-
some degradation pathway. We found no changes in levels of
proteins involved in mitochondrial dynamics after 10 days of
BR (Fig. 3A). This was surprising since mitochondrial dys-
function has been proposed as one of the mechanisms leading
to muscle atrophy via ROS production (36, 41, 50). Although
we did not measure ROS production directly, mitochondrial
fission and fusion are thought to help regulate mitochondrial
quality, and imbalances in these processes are linked to muscle
loss during aging and other atrophy conditions (10, 32). What
is more surprising is that both groups did not display any
significant changes in proteins involved in mitochondrial con-

tent and dynamics, although one group experienced muscle
atrophy (control), whereas the other group did not (HMB). This
suggests that immobilization-induced muscle atrophy may not
have a direct impact on mitochondrial turnover after (10 days
of) BR in older adults.

We also found no changes in proteins involved in skeletal
muscle autophagy (Fig. 3B). These findings are in partial
agreement with a recent investigation examining 5 days of BR
in young and old participants (51). Tanner et al. (51) found no
changes in beclin-1; however autophagasome formation (mea-
sured by LC3BII-to-LC3BI ratio) increased in older adults
following BR. Although we found no changes in the LC3BII-
to-LC3BI ratio in this study, it is possible that there were early
changes in these markers in the first few days of BR. It is
thought that MPB is the most active during the early stages
(1–3 days) of disuse (54); thus, after 10 days, the processes
associated with skeletal muscle breakdown and autophagy may
have returned to baseline or adaptation to the new level of
inactivity was completed. Collectively, these findings highlight
the need for studies to investigate the early response to BR.

Interestingly, we found the total amount of poly-ub proteins
were elevated in both groups at the end of BR. This suggests
muscle is undergoing remodeling after 10 days of BR, regard-
less of whether it is undergoing atrophy or not. HMB has been
shown to lower MPB by inhibiting the ubiquitin-proteasome
degradation pathway in various models of muscle atrophy (19,
25, 29, 48, 49). It is possible that HMB may have downregu-
lated the levels or activity of the proteasome leading to deg-
radation of the ubiquitinated proteins. Due to low sample
volumes, we were unable to measure other proteins involved in
the ubiquitin-proteasome pathway.

Physical inactivity and aging are linked to an increase in fat
mass and decrease in muscle mass. HMB has a significant
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effect on decreasing fat mass and preserving muscle mass
compared with control (1). Oversupply of fatty acids increases
fat storage not only in adipocytes but also liver, heart, pan-
creas, and skeletal muscle (27), which may contribute to
muscle atrophy during disuse. While we did not measure
plasma free-fatty acids in this study, plasma free-fatty acids
have been found to be elevated after 7 days of BR (17) and
skeletal muscle intramuscular triglyceride levels to be in-
creased following 28 days of BR under hypercortisolemia (14).
Further investigation into the increase in intramuscular triglyc-
eride levels found no increases in diacylglycerols (14) or any
other measured lipid species. Fatty acid content in many of the
lipid species we measured remained unchanged following BR
(Supplemental Tables S1–S11). These findings are in agree-
ment with a 7-day BR study in younger adults (17). Longer
durations of disuse may be needed to significantly impact
skeletal muscle lipid accumulation (8). Interestingly, we saw a
trend for an increase in TAG fatty acid content driven primarily
by the HMB group following BR (Fig. 4). These findings
suggest a role for HMB to stimulate alterations in fatty acid
composition in the TAG pool. A recent investigation found
acute HMB supplementation in mouse myotubes increased
markers of lipid biosynthesis and elevated total lipid content
through the upregulation of peroxisome proliferator-activated
receptor-� and fatty acid synthase (45). These findings may
have important metabolic implications as lipids are being
stored in the muscle as TAGs and not other bioactive species
that are known to impact insulin resistance and inflammation,
as seen after a single acute bout of exercise (44).

RT rehabilitation period. We previously reported during the
RT rehabilitation following 10 days of BR that the control
group regained the leg lean mass lost during BR and the HMB
group gaining an additional 0.71 kg over baseline during this
period (16). In addition, only the HMB group significantly
gained strength above baseline at the end of the rehabilitation
period. Following the RT rehabilitation, mitochondrial content
remained unchanged or slightly reduced in the CON group
while HMB maintained total mitochondrial OXPHOS (Fig.
2A). Resistance exercise is widely used to combat disuse
atrophy due to its potent anabolic effects resulting in improved
skeletal muscle mass and strength. These findings highlight the
benefits of combining HMB with RT to help strength recovery
via increasing mitochondrial content and are supported by
preclinical data showing HMB stimulation of mitochondrial
biogenesis and fatty acid oxidation via peroxisome prolifera-
tor-activated receptor-� coactivator-1� stimulation (24). With
the increase of mitochondrial OXPHOS in the HMB group, we
also found mitochondrial fusion protein MFN2 and fission
protein DRP1 were increased in the HMB group (Fig. 3A).
Future verification is needed using sensitive tools such as
imaging methods to directly examine the morphology and
number of the mitochondria. Overall, we found little effect of
RT rehabilitation on autophagy proteins similar to our findings
over the BR period, possibly because this process may occur
early during the rehabilitation period. Lastly, the total amount
of poly-ub proteins was reduced as a result of the RT rehabil-
itation in both groups pointing to the benefits of exercise in
normalizing muscle protein metabolism.

Limitations and future directions. Our parent study exam-
ined the effects of HMB on preserving muscle mass in older
adults during extended BR (16). Due to the relatively small

sample size in our study, we did not have adequate power to
determine significant between-group or gender differences in
some variables. We did, however, attempt to infer trends where
appropriate, which should be investigated in a larger study.
There is a paucity of literature regarding the changes in protein
metabolism during the first 1–3 days of BR in older adults.
Investigations examining the temporal changes during this
period are needed to understand what metabolic pathways that
contribute most significantly to muscle atrophy are involved to
develop nutritional and other countermeasures for muscle at-
rophy. Additionally, our studies included healthy older adults
and did not have a young group to compare our findings.
Future investigations are needed to extend our findings to
healthy younger individuals and older adults who may have
conditions that influence skeletal muscle mass.

Conclusions and significance. In conclusion, mitochondrial
OXPHOS, dynamics, and autophagy were unchanged follow-
ing 10 days of BR in older adults. HMB stimulated an
increase in TAG fatty acid pool, which may protect the
muscle from other bioactive lipid species known to stimu-
late ROS and inflammatory pathways. HMB increased mi-
tochondrial OXPHOS content and dynamics during 8 wk of
RT rehabilitation compared with placebo control. Collec-
tively, these findings help explain some of the mechanisms
for the benefits of HMB in preserving muscle mass during
BR and enhancing muscle strength during exercise recovery.
This study highlights a potential new mechanism of action
for HMB on skeletal muscle mitochondria when combined
with exercise. Additional investigations are needed to fur-
ther interrogate these mechanisms.
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